дефинисана за свако a > 0, и за сваки реалан број x се назива експоненцијална функција за основу a.
Приметимо да горња једнакост важи за a = e, пошто је
Експоненцијалне функције „сједињују“ сабирање и множење, што се види следећим експоненцијалним законима:
Горње важи за све позитивне реалне бројеве a и b, и за све реалне бројеве x и y. Изрази који укључују разломке и кореновање често могу бити упрошћени коришћењем експоненцијалне нотације јер:
и, за свако a > 0, реалан број b, и цео бројn > 1: